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Faculty of Electrical Engineering, University of Ljubljana
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Abstract—This paper presents a novel method for fuzzy space
partitioning and the identification of Takagi-Sugeno fuzzy models.
The novelty is in its region-splitting mechanism and membership
function definition, which is based on hyperplanes. The proposed
algorithm introduces a concept of principal component analysis
to define the hyperplanes that split the problem space and uses
the distances to these hyperplanes as metrics instead of center-
oriented clusters. In contrast with many other methods, the
presented method delivers reproducible results and has an easy
tuning procedure. The performance is illustrated with analytical
examples, benchmark problems from the literature, and real-
process data. The obtained results are very promising; however,
as with most learning methods, the results depend on the data
distribution and input variable selection.

Index Terms—Hierarchical Fuzzy Model, Eigen-Hyperplane,
Principle Component Partitioning.

I. INTRODUCTION

Processes, which are nowadays equipped with a number
of sensors, produce a huge amount of data. With the help
of these data, models of the processes can be generated,
which allow us to better understand the behaviour, and can be
used for the optimization or control of the process. Usually,
data-mining algorithms and data-based model identification
algorithms are used to derive the models from the measured
process data. Although some of these methods can produce
very accurate results, they sometimes contradict the model-
ing goals in the process and control industry, i.e., instead
of producing simple, transparent, and explanatory models,
some methods produce models that are large, complex, highly
uninterpretable, and nontransparent. This limits the spread and
use of such models and methods in the process industry and
control in general. In process and control industry, methods
that give reproducible results, transparent and explanatory
models, and can also produce dynamical models are preferred.
The simplest approach for identifying models based on data
is linear regression. However, with this method, only linear
models can be identified.

To model a nonlinear process, which is usually the case
when dealing with real processes, a multi-model approach
can be used [1]. The idea is to combine several simple,
usually linear, sub-models and use them to describe the global
nonlinear behavior of the process. This concept is incorporated
in the Takagi-Sugeno (T-S) fuzzy model [2]. Models in the T-S
form are very important nonlinear approximators for nonlinear

static and dynamic process approximations [1], [3], [4]. This is
mainly due to their transparency and linear local models (LM).
This makes an easy extension of classical linear control theory
to the nonlinear world.

The identification of the T-S model with known structures
consists of the identification of model’s premise and conse-
quent part parameters. With the premise parameters, the prob-
lem space is divided into smaller regions over which the local
linear models (consequence part) are defined to approximate
the target data. The partitioning of the problem space deter-
mines the validity regions and the validity of the local models.
The estimation of the local models is then done using least-
squares methods. The decisive difference between existing
algorithms in the literature is the strategy of problem space
partitioning (defining the validity regions and, consequently,
the parameters of validity functions). The space partitioning
in our approach is based on a hyperplane division, which is
close to the concept of the hinging hyperplane model proposed
in [5]. The main advantages of this approach are the simplicity
and transparency of the structure. The disadvantages are the
convergence and initialization problems, which are reported
in [6], [7]. The hinging hyperplane model can be obtained
using different methods: by improving the basic Breiman’s
algorithm given in [5], or by the Gauss-Newton algorithm
given in [8], by mixed-integer programming as proposed in
[9], or using the structure of hierarchical models as proposed
in [7] and [10] together with the fuzzy c-regression method
(FCRM) proposed in [11], or the fuzzy c-varieties method
to identify hinging hyperplane models. One possible solution
for identifying the hyperplanes in the data is the evolving
principal component clustering with a low run-time complexity
presented in [12]. The hinging hyperplane models contain
the information of local linear models and the partitioning
of the operating domain given by the validity or membership
functions, as is the case in projective motion segmentation [13]
or in hybrid system identification [14], [15]. In [16], it is shown
that a hyperplane-shaped clustering (HPSC) is more effective
in Takagi-Sugeno (T-S) fuzzy model identification compared
to hypersphere-shaped clustering, because the hyperplane can
be directly accommodated into the rule premise so that the
number of fuzzy parameters is significantly reduced. The use
of hyperplane clustering in a single-pass learning mode, called
parsimonious learning machine (PALM), is proposed in [17].
Because of low computational complexity, due to the use of
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hyperplane clustering, it is very fast and enables effective
on-line learning, suitable for the fast and rapidly changing
natures of data streams. One of very important hyperplane
clustering methods is Algebraic Subspace Clustering (ASC)
which results in solutions in the form of the factorization
or differentiation of polynomials [18], but it has a major
drawback in its exponential growth of complexity. Another
method of hyperplane clustering that has a solid theoretical
background is Spectral Curvature Clustering (SCC) [19]. This
method computes a D-fold affinity between all D-tuples of
points in the data set. The method has combinatorial com-
plexity and becomes impractical for higher dimensions. The
most practical method is K-Hyperplanes method (KH) [20],
which assigns a new cluster and corresponding new normal
eigenvector defined by principal component analysis of a
cluster covariance matrix (PCA). The method is robust to
the noise, but it is sensitive to outliers and the results may
converge to the local minimum. A modification of KH is the
Median K-Flats method (MKF) [21], which uses L1 norm in
the objective function instead of L2 norm, as proposed in the
KH method. This solves the problem of robustness to outliers.
At the end, it should be pointed out that any single robust
subspace learning method suitable for high relative dimen-
sions, i.e., RANSAC [22] or REAPER [23], can be applied
for sequential extraction of the most dominant hyperplane by
removing the points lying close to it; also, the learning of the
next most dominant hyperplane can be achieved in an iterative
way. This iterative hierarchical procedure was implemented in
[24]; it is a supervised hierarchical clustering for fuzzy model
identification. The high flexibility of the validity functions that
is obtained with the fuzzy clustering combined with supervised
learning results in an efficient partitioning algorithm, which
is independent of initialization and results in a parsimonious
fuzzy model. The supervised hierarchical clustering is very
efficiently used in evolving a fuzzy-model-based design of
experiments, as reported in [25], [26]. An interesting idea
regarding the golden section searching method, which is
close to the hyperplane searching method and results in a
small number of partitions, is presented in [27]. The evolving
strategy of possibilistic clustering for the monitoring of cyber-
attacks is presented in [28], and a general purpose evolving
clustering with different inner matrix norms is shown in [29].
An extensive overview and analysis of hyperplane clustering
methods is given in [30]. The main contribution of this paper
is the novel partitioning algorithm based on hyperplanes that
are defined by eigenvectors. This partitioning is the most
appropriate and the easiest way for the further development
of Takagi-Sugeno local linear models. The presented approach
is, in certain aspects, related to methods such as SUHICLUST
[24], [25], LOLIMOT [31], and HILOMOT [32]. LOLIMOT
considers splitting the partition into two (or more, depending
on user settings) equal parts in each dimension. The split is
performed in the dimension that decreases the model error. The
disadvantage of this is that the partitioning is axis-parallel.
Furthermore, with high dimensional problems, the checking
of splits in each dimension is time-consuming. The drawback
of axis-parallel partitioning was fixed using the HILOMOT
method. This method uses the same principle as LOLIMOT

with the additional optimization of a splitting border angle.
However, this introduces even more computational cost since
each possible split in each dimension is further optimized.
The SUHICLUST method was introduced to improve the
LOLIMOT space partitioning with the advantages of product
space clustering. Due to its use of axis-oblique partitioning, it
can generate fuzzy models of the same accuracy as LOLIMOT
but with fewer local models. It also builds the models incre-
mentally by splitting the worst performing local region in half.
The splitting is done in the direction of the largest eigenvector,
which is used to set the initial positions for clusters that are
then refined with fuzzy Gustafson-Kessel clustering (local and
global). This introduces much computational effort.

Similar to LOLIMOT and HILOMOT, the proposed ap-
proach splits the problem space by checking different split
options. However, instead of checking each dimension for the
split, the split is performed with a hyperplane. The hyperplanes
are determined by eigenvectors of the data matrix in the
region that has to be divided. However, instead of checking all
possible splitting hyperplanes, only the first few are checked
according to principle component analysis (PCA) principle.
With this, an efficient split procedure is obtained.

In contrast to many established methods, the proposed
Hierarchical Fuzzy Model Learning method based on Principal
Component Analysis (HiPCA) performs an axis-oblique space
partitioning. The computational complexity, given in O-term
notation to indicate the number of flops, is relatively low,
O(c ·m2), where c stands for the number of clusters and m
for the dimensionality of the feature space. Low complexity
is the result of the hyperplane clustering used, which leads to
reductions in computational time and memory demand. The
algorithm also delivers reproducible modeling results, which is
an advantage compared with most other modeling algorithms
that produce different results in each run of the algorithm
[26]. The complexity of the model is not fixed in advance as
it usually is with unsupervised learning methods. Similar as
LOLIMOT and SUHICLUST, the proposed HiPCA method
has good usability, which is mainly due to its having few
tuning parameters. It is possible to generate feasible models
by setting only the error threshold. The user can also improve
results by selecting different fuzziness factors and different
local model approximation algorithms.

The novelty, the highlights of the proposed method, and
the differences regarding the SUHICLUST method can be
summarized with the following points:

• space splitting based on hyperplanes defined by eigen-
vectors,

• not all hyperplanes are considered for splitting, only the
first few according to the principle component analysis
principle,

• calculation of membership degrees is based on the dis-
tance to the hyperplanes instead of the distance to the
cluster centers,

• no additional clustering is needed.
This paper is organized as follows. In Section I, the intro-

duction to the problem and state-of-the-art is given. After that,
in Section II, the methodology of the proposed approach are
given. First, the fuzzy model in Takagi-Sugeno form based on
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hyperplane clustering is presented, followed by the splitting
of hyperplanes, the hierarchical model tree construction, the
detection of optimal splitting hyperplane, and the detection
of the next splitting leaf are discussed. In Section III, the
benchmark examples and comparisons with other established
methods are given, and Section IV concludes the paper.

II. METHODOLOGY

A. Takagi-Sugeno fuzzy model based on hyperplane clustering

The Takagi-Sugeno fuzzy model is a universal approximator
and capable of describing an arbitrary non-linearity of the
observed system by a set of overlapping linear models. Each
linear model is defined in its validity region and, together,
they are designed to cover the whole data space. The validity
regions are defined with the normalized membership functions
Φi, i = 1, ..., c, and the output of the fuzzy model is obtained
as the weighed sum of the local linear model outputs ŷi, for
which the validity functions are used as weights. Suppose there
are c local models (fuzzy rules), the output of the fuzzy model
is then given by the following equation:

ym =
c∑
i=1

Φi(zzz)ym,i(uuu) (1)

where uuu stands for the regressor vector uuu = [1, u1, ..., unu
]T

which spans the consequent part of the fuzzy rule, which is
usually given in a linear affine form as:

ym,i(uuu) = θi,0 + θi,1u1 + ...+ θi,nu
unu

, (2)

where θi,j , i = 1, ..., c, j = 0, ..., nu stands for the
parameters of local linear models, which are calculated by
weighted least squares (WLS). The regressor vector uuu consists
of all variables that influence the identified process output.

The vector zzz = [z1, ..., znz
]T spans the premise input space,

which, together with other nonlinear parameters, defines the
weights, Φi(zzz), i = 1, ..., c of the local linear models defined
in Eq. 1. It consists of all variables that best describe the non-
linearity of the input-output space.

Both parameters, the linear parameters of the local linear
models and the nonlinear parameters of the validity functions,
can be defined independently. If the validity functions are
defined first, the parameters of the local linear models’ θij
are estimated by using the least squares method. In contrast,
the nonlinear parameters could be defined by nonlinear opti-
mization or, what is commonly used, by partitioning of the
input-output data space by clustering methods.

The partitioning of the input-output data space is the most
important and challenging part in fuzzy model identification.
The results of partitioning are the membership functions,
which are then normalized to obtain the weights in the form
of validity functions as follows:

Φi(zzz) =
µi(zzz)∑c
j=1 µj(zzz)

, i = 1, ..., c (3)

The membership functions can be of different forms; often
triangular, trapezoidal, Gaussian, or Bell forms are used. In
our case, the membership functions of the sigmoidal form are
used because of simplicity. This means that the membership

is a sigmoidal function of the distance between the sample
and the splitting hyperplane. The jth splitting hyperplane is
defined as follows

pppTi,j(zzz − vvvi) = 0, (4)

where pppi,j stands for jth eigenvector of the covariance matrix
ΣΣΣi, which is orthogonal to the splitting hyperplane, and vvvi
is the center of the data matrix ZZZi of dimensions Ni × nz ,
which lies on the splitting hyperplane, and where ZZZi =
[zzz(k)], k = 1, ..., Ni. The matrix of eigenvectors is obtained
via the singular value decomposition (SVD) of the covariance
matrix ΣΣΣi, ΣΣΣi = cov(ZZZi). The singular value decomposition
is given as

ΣΣΣi = PPP iΛΛΛiPPP
T
i (5)

where PPP i stands for the matrix of eigenvectors pppi,j , j =
1, ..., nz with dimension nz × nz , and ΛΛΛi represents the
diagonal matrix of eigenvalues ΛΛΛi = diag(λj), j = 1, ..., nz of
the same dimension. The mean vector vvvi consists of variables’
means (the means of the columns in the data matrix ZZZi). Each
eigenvector from matrix PPP i together with the mean vector
vvvi defines one hyperplane, all together nz hyperplanes in
the whole data space of matrix ZZZi. The splitting hyperplanes
are defined by the normal vector on the plane, given by the
eigenvectors pppi,j , j = 1, ..., nz and the mean vector vvvi.

The membership function can be finally written as a the
sigmoidal function of the distance between the sample and
the splitting hyperplane, normalized by the corresponding
eigenvalue as follows:

µi(zzz) =
1

1 + exp

(
pppTi,j(zzz−vvvi)

ηλ
1
2
j

) , (6)

where λj defines the width of the membership function and
comes from the corresponding eigenvector pppi,j . The member-
ship function also depends on the user-defined parameter η,
which is called the fuzziness parameter. With this parameter,
the overlapping between the membership functions is defined.
The overlapping of the membership functions affects the
smoothness of the approximation; higher overlapping results
in a smoother approximation. However, too large overlapping
usually leads to a larger identification error.

Note that the term pppTi,j(zzz − vvvi) defines the distance of the
data sample zzz from the hyperplane, as presented in Fig. 1.
If the value of pppTi,j(zzz − vvvi) is lower than zero, the sample
zzz belongs to left (otherwise, to the right side of the splitting
hyperplane). This hyperplane becomes the line in the case of a
2-dimensional input-output data space, as shown in Fig. 1. In
Fig. 1, the unity eigenvectors pppi,j , j = 1, 2 are scaled to show
the variance of the data in each direction of eigenvectors, i.e.,
gggj , j = 1, 2 stands for the principal component of the data
and is defined as λ

1
2
j pppi,j , j = 1, 2.

B. Splitting hyperplanes and hierarchical model tree

The presented splitting results in a hierarchical model tree.
The basic idea of the proposed method is to split the data
inside the input-output data space by hyperplanes into smaller
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Fig. 1. Data-space partitioning by hyperplane splitting.
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Fig. 2. Hierarchical model principle. The validity functions of each leaf results
from the multiplication of all sigmoid functions along the path.

subspaces, which are then modelled by local linear models.
Splitting the data space into smaller subspaces and attempting
to find the local models in the form of linear models means
that we are attempting to find the set of local models that will
together minimize the unexplained variance of the measured
data samples. In the following, the mechanism of splitting is
presented in more detail. The model structure is presented in
Fig. 2.

The algorithm starts with one leaf containing all the data
(covering the entire problem space). Its validity function (nor-
malized membership degree) equals one throughout the entire
region. Next, in the splitting stage 2, this leaf is split in half
(leaves 1 and 2) regarding the hyperplane, which is defined by
the eigenvectors and the center of the covariance matrix for
the whole data set. If the value pppTi,j(zzz − vvvi), for the sample zzz

is lower than zero the sample belongs to one leaf (otherwise,
to the other leaf). The left leaf is presented by membership
functions µi and the right one by the complementary function
µ̃i. Fig. 2 represents three stages of the hierarchical splitting,
which results in three validity functions, because in each stage
one leaf is divided into two new leaves. In total, one leaf is
added to the model.

The data is then, according to the defined hyperplane,
divided between the two new leaves. Using these data, the
local model for each leaf is identified using the least squares
method. At each splitting stage, a green leaf with the poorest
performance is selected and split. In the presented case, in
Fig. 1, these are the orange root in splitting stage 2 and the
left orange leaf from stage 3. The splitting of the leaves is
performed until a predefined tolerance of the whole model
approximation is archived. The membership degrees of clusters
µBi , i = 1, ..., c are calculated as the product of all sigmoid
functions µj or µ̃j along the traveling path (the branch) from
the ending leaves (i-th green leaves) to the root leaf as follows:

µBi (zzz) =

Bi∏
j=1

{
µj(zzz), pppTj (zzz(k)− vvvj) ≤ 0.

µ̃j(zzz), otherwise.
(7)

where Bi stands for the number of leaves from i-th green leaf
to the root leaf. The validity functions Φi(zzz), i = 1, ..., c are
defined as the normalized membership functions

Φi(zzz) =
µBi (zzz)∑c
j=1 µ

B
j (zzz)

, i = 1, ..., c (8)

For example, in Fig. 2, there are three final green leaves at
the splitting stage 3, which means three rules with three valid-
ity functions Φ1(zzz),Φ2(zzz) and Φ3(zzz). The membership degree
µB1 (zzz) is defined as the product of all membership degrees
from the green leaf number 1 to the root leaf. The number of
leaves along this traveling path is B1 = 2. The membership
functions are as follows: µB1 (zzz) = µ3(zzz)µ2(zzz), µB2 (zzz) =
µ̃3(zzz)µ2(zzz), and µB3 (zzz) = µ̃2(zzz). The normalized membership
degree or the validity function Φ1(zzz) is then defined as
follows:

Φ1(zzz) =
µ3(zzz)µ2(zzz)

µ3(zzz)µ2(zzz) + µ̃3(zzz)µ2(zzz) + µ̃2(zzz)
. (9)

The hierarchical model tree from Fig. 2 is, in the form of a
fuzzy model, described as follows

Ri : if zzz(k) is Φi(zzz(k)) then ym(k) = ym,i(k), i = 1, 2, 3 (10)

Using the sigmoid membership functions is only one way
of handling the transitions. There are also other possibilities
(e.g., linear or Gaussian functions over the area of transition).

C. Detection of optimal splitting hyperplane

In Fig. 1, it is shown that the largest principal vector ggg1,
the vector with the largest variance, points approximately in
the direction of the model, at least much better than the vector
with lower variance ggg2. The idea of splitting is to find as many
subspaces as needed to describe the most important variance
of the data, and only a small latent variance will remain. This
latent variance, which remains undescribed, is called the noise.
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Based on the assumption that the largest eigenvector points
approximately in the direction of model, the idea of the HiPCA
is to split the data in the direction of the vectors with the largest
variance. This means that the eigenvector with the largest
eigenvalue (i.e., the eigenvector ppp1 in Fig. 1) is the normal
vector to the splitting hyperplane. However, a 2-D example
can quickly be developed in which the data is distributed so
that both eigenvalues are the same. Therefore, the splitting
procedure cannot be done only based on the largest eigen-
vector. The HiPCA partitioning procedure considers splitting
the hyperplanes perpendicular to the directions of the highest
variances of the data, which means in the direction of the
largest eigenvectors that are considered as candidates for the
normal to the splitting hyperplanes.

To find all possible candidates for splitting, the data set
of raw measurement ZZZi of dimension Ni × nu + 1, defined
as z̃zz(k) = [ũuu(k) ỹ(k)], k = 1, ..., Ni, where ũuu(k) =
[ũ1(k), ..., ũnu

(k)]T , should be first centered by mean of each
variable in the data matrix ZZZi, where mi is the mean of
variable ũi and i = 1, ..., nu and my is the mean of y,
and scaled (Ki = max |ũi(k) − mi|, i = 1, ..., nu and
Ky = max |ỹ(k) − my|), i.e., the variables are centered by
mean values of the raw variables and scaled by absolute
maximal deviation of variables from the mean value. In
that sense, all the values of normalized variables are in the
interval between −1 and 1. The normalized data matrix is
then described as follows:

ZZZi =


u1(1) . . . unu

(1) y(1)
u1(2) . . . unu

(2) y(2)
...

. . .
...

...
u1(N) . . . unu

(N) y(N)

 (11)

and the covariance matrix, which describes the distribution of
the data, as follows:

ΣΣΣi =
1

Ni − 1
ZZZTi ZZZi (12)

Next, the singular value decomposition of the covariance
matrix is calculated, and the matrices of eigenvectors and
eigenvalues matrices are obtained as proposed in Eq. 5.

Once the eigenvectors and eigenvalues are obtained, the
number of possible splitting hyperplanes r is calculated as
the minimal number of eigenvalues to satisfy the condition in
Eq. 13:

r = arg min
n

(∑n
k=1 λk∑nz

j=1 λj
≥ δ, n ∈ [1, nz]

)
(13)

where the threshold δ is usually set to 0.95, meaning that only
the eigenvectors that explain the 95% of whole data variance
are considered as a splitting candidates. This means that in
each splitting stage s, the worst leaf from stage s− 1 is split
into two new leaves (right leaf R and left leaf L), and the
splitting can be done in r different directions. Accordingly,
the data set from the previous leaf is divided between new
leaf pairs as follows:

ZZZL
s,j =

{
zzz(k) ∈ ZZZs : pppTs,j(zzz(k)− vvvs) ≤ 0; k = 1, ...Ns

}
(14)

ZZZR
s,j =

{
zzz(k) ∈ ZZZs : pppTs,j(zzz(k)− vvvs) > 0; k = 1, ...Ns

}
(15)

where ZZZs is data set of the previous leaf that is being split,
Ns is the number of samples in that leaf, ppps,j , j = 1, .., r
is the chosen eigenvector and vvvs is the center that defines the
jth splitting hyperplane; the upper index L defines the left and
index R the right leaf. For each new leaf, a new local model
is identified using the least squares method (LSM).

Having r possible splitting, we also obtain r possible dif-
ferent fuzzy model outputs yjm, j = 1, ..., r in the normalized
data space. Among these r different models, the model that
approximates the measured data the best is chosen, i.e., the
model that has the smallest normalized root mean square error
(NRMSE) between the measured output data and the simulated
model output given in Eq. 16,

Γj =

(∑N
k=1(y(k)− yjm(k))2∑N
k=1(y(k)− y)2

) 1
2

, j = 1, ..., r

y =
1

N

N∑
k=1

y(k)

(16)

where yjm(k) is the jth model output and y(k) is the normal-
ized output at sample k. This means that the real model output
in measured data space is re-scaled and shifted as follows:
ỹjm(k) = Ky · yjm(k) +my, j = 1, ..., r. In general, different
types of error can be used. After calculation of NRMSE for
all possible splitting, the split and the model with the smallest
NRMSE and the corresponding model is selected as follows:

h = arg min
j

Γj (17)

This gives the splitting hyperplane parameters (ppps,h, vvvs and
λs,h) and new leaves, i.e., two new leaves in stage 3, and the
leaves numbers 1 and 2 as shown in Fig.2.

Notice that usually the model of the process is used to
predict the output; this means that only the input variables
are known. However, to calculate the validity functions of the
fuzzy model, the whole input-output data vector zzz(k) should
be known. This is done with the principle of projection in
which the last element of zzz(k) is substituted with the last
component of the center vector vvvs.

D. Detection of next splitting leaf

When all validity functions are defined, the error of the
whole current fuzzy model Γ is calculated as follows:

Γ =
c∑
i=1

N∑
k=1

Φi(zzz(k))(y(k)− yhm,i(k))2 . (18)

The whole model error in Γ is then divided among the end-
leaves. The simplest and most effective one is the local sum
of squared errors, i.e., standard deviation of local model [25],
calculated as:

ei =
N∑
k=1

Φi(zzz(k))(y(k)− yhm,i(k))2, i = 1, .., c (19)



0278-0046 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2019.2931243, IEEE
Transactions on Industrial Electronics

6

where c is the number of local models and yhm is the new
model output.

The leaf with the highest error ei is chosen for the further
split as follows:

w = arg max
i
ei . (20)

In a case of Fig. 2, in stage 2, this leaf is leaf number 1.
The procedure is repeated until a suitable approximation is
reached (or until the maximal number of regions is reached).
The algorithm also stops if there are no leaves left to split. The
leaves are not allowed to be split if their maximal eigenvalue
is below a certain threshold, which is related to the variance
of noise (four times of the noise variance) or if there are not
enough data points belonging to that leaf.

The pseudo-code for the HiPCA algorithm in the normalized
data domain is given in Alg. 1.

Algorithm 1 HiPCA learning algorithm
1: Define tuning parameters: η, cmax, Γmax, δ

2: Initialize: c = 1

3: Estimation of θi,j for linear model (c = 1)

4: loop:

5: Computation of fuzzy model output from Eq. 1

6: Computation of membership degrees from Eqs. 6, 7

7: Normalization of membership from Eq. 8

8: Calculate model error Γ from Eq. 18

9: if Γ ≤ Γmax or c ≥ cmax return model and stop

10: Computation of ei from Eq. 19, i = 1, ..., c

11: Select the cluster w with the highest error from Eq. 20

12: Calculate vvvw and ΣΣΣw

13: Calculate PPPw and ΛΛΛw from Eq. 5

14: Find smallest r that satisfies Eq. 13

15: c← c+ 1

16: for j = 1 : r (test possible splits)

17: Split the data of w-th cluster to ZZZLw,j and ZZZRw,j as given
in Eqs. 14, 15

18: Estimation of local model parameters for clusters ZZZLw,j
and ZZZLw,j by WLS

19: Computation of fuzzy model output from Eq. 1

20: Calculate model error Γj from Eq. 18

21: end

22: Select the best splitting hyperplane h as given in Eq. 17

23: Split the wth cluster into two new clusters using hyper-
plane h

24: goto loop

The variable ZZZw used in Alg. 1 represents the data matrix
of the wth leaf or subspace; w represents the index of the
splitting leaf; c represents the number of green end-leaves;
PPPw and ΛΛΛw represent the eigenvector matrix and eigenvalue

matrix of the splitting leaf, respectively; Γm represents the
current model error; ej represents the error of the jth end-
leaf; ZZZLw,j and ZZZRw,j represent the data matrix of the new left
and right leaf obtained by splitting the previous worst leaf
with the jth hyperplane; pppw,j and vvvw defines the jth splitting
hyperplane; h defines the index of best split.

III. BENCHMARK EXAMPLES AND COMPARISONS

The proposed method is compared to other methods like
LOLIMOT (LOLI) [31], [33], HILOMOT [33] (HILO), SUHI-
CLUST [26], [24], [25] (SUHI), fuzzyid [34], zofuzid [34]
and hinging-hyperplanes (HP) [10]. The method was also
compared to the methods implemented in the sk-learn [35]
package: the popular Random Forest Regressor method (RF),
the Support Vector Machine (SVR), the Nearest Neighborhood
Regression Tree KNNT, the AdaBoost Tree (ADAB), and the
Extra Tree Regressor (ETR). The methods/toolboxes used are
implemented in different programming environments. The sk-
learn is implemented in Python; HILOMOT, fuzzyid [34],
zofuzid [34] and hinging-hyperplanes (HP) in Matlab; SUHI-
CLUST and HiPCA in C#. However, the Matlab implementa-
tion of LOLIMOT does not allow changing the fuzziness factor
and does not consider the possibility of estimating all local
models’ parameters in the new iteration. This can sometimes
lead to better results; therefore, the LOLIMOT was also re-
implemented in the C# environment, giving the method more
flexibility (LOLI C#). The software package for the HiPCA
method can be downloaded from [36]. The performances of
methods are compared on the static and dynamic examples
presented in the following subsections. The methods were
tested on Lenovo T570 laptop with an i7, 2.9 GHz processor
and 16GB RAM. The execution time is measured from the
start of method execution to the final result. The provided
execution times are measured from the user’s point of view
and only serve as an orientation about the computational
complexity of the algorithms.

All the results are presented in the form of tables, in which
the first column of the table represents the method name. In
the second column, the number of generated local models
follows (in the case of SVR, the number of support vectors).
The third column represent the error on the learning set and
the fourth the error on the testing set. The fifth column
represents the number of assembled models (#EM). This
number is equal one for most methods that are not based
on the ensembles principle. Ensemble-based methods have
more differently learned nonlinear models from which the
final output estimation is made either by a voting principle
or simply by averaging the outputs of all models. The number
of local models for the assembled methods is calculated as
the average number of local models of all generated end-
models. The last column represents the approximate a needed
to calculate the model. In all tables, the dividing line is
drawn to make the distinction between fuzzy and non-fuzzy
approaches. These non-fuzzy approaches are implemented in
sk-learn package.
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Method #LMs Γl Γt #EM t[s]
HiPCA 5 0.0278 0.0282 1 < 1
LOLI 20 0.0495 0.0686 1 ≈ 3

LOLI C# 11 0.0452 0.0528 1 ≈ 1
HILO 6 0.0489 0.0502 1 ≈ 4
SUHI 9 0.0474 0.0524 1 ≈ 4
fuzzyid 25 0.0567 NaN/0.0534 1 < 1
zofuzid 16 0.0818 NaN/0.0780 1 < 1

HP 8 0.0645 0.0648 1 ≈ 5
KNNT 31 0 0.054 1 < 1
ADAB 357.65 0.012 0.086 20 < 1
ETR 866.5 0 0.049 10 < 1
RF 32 0.183 0.232 10 < 1
SVR 175 0.006 0.007 1 ≈ 119

TABLE I
RESULTS FOR MARS PROBLEM

A. Static examples

Three examples were chosen for comparison of static model
problem: the MARS 1 problem [37], the prediction of Mack-
eyGlass time series [38] and Hyperbola-benchmark [25].

1) The MARS 1 examples: In this example, the goal is to
model the function:

y =
2ef1

ef2 + ef3
(21)

where f1 = 8((u1−0.5)2+(u2−0.5)2), f2 = 8((u1−0.2)2+
(u2 − 0.7)2) and f3 = 8((u1 − 0.7)2 + (u2 − 0.2)2).

The size of the learning set was 900 samples, for which u1
and u2 were randomly generated from a uniform distribution.
The validation data was also 900 samples; however, in this
case, u1 and u2 were equally distributed from zero to one,
creating a grid. The goal was to achieve an NRMSE of 0.05.
The global least squares method was used to estimate the local
model parameters for all fuzzy methods. Detailed settings of
the methods and scripts can be found in [36]. The obtained
results are presented in Table I.

As seen from the results table, the methods implemented in
the sk-learn package are very fast; however, they usually need
many local models to achieve good accuracy. For example,
the ETR method created on average 866 local models (or end
leaves) for the data set of 900 samples. Also, the difference
between the learning and testing NRMSE is much higher than
obtained by other methods that are usually used in control
engineering. Note that the SVR learning time is much higher
than by other methods. The reason for that is that the grid
search method was used, which checks multiple possible
settings. In this test, the fuzzyid and zofuzid produced the NaN
NRMSE since few samples were estimated as NaN-s. Along
with the NaN value, the NRMSE value is also given, which is
obtained not considering NaN-s. The HiPCA method obtained
the model in less than a second and with only 5 local models.
The tuning parameters of HiPCA are: the termination criteria
defined by the maximal NRMSE equal to Γmax = 0.05, the
maximal number of local models defined as cmax = 20, and
the fuzziness parameter η = 1.5.

2) MackeyGlass time series: The chaotic time series [38]
is generated from the MackeyGlass (MG) differential delay

Method #LMs Γl Γt #EM t[s]
HiPCA 25 0.0461 0.0635 1 ≈ 14
LOLI 31 0.1362 0.1562 1 ≈ 6

LOLI C# 31 0.0498 0.0649 1 ≈ 20
HILO 30 0.0478 0.0618 1 ≈ 26
SUHI 29 0.0477 0.0577 1 ≈ 197
fuzzyid 81 0.059 0.0771 1 ≈ 17
zofuzid 81 0.2451 0.2523 1 < 1

HP 76 0.1404 0.1796 1 ≈ 58
KNNT 31 0 0.099 1 < 1
ADAB 521.2 0.051 0.116 10 < 1
ETR 863.8 0.073 0.094 10 < 1
RF 235.5 0.092 0.149 10 < 15

SVR 925 0.005 0.006 1 ≈ 2926

TABLE II
RESULTS FOR MG SERIES PREDICTION PROBLEM

equation defined by the following equation:

z(t) =
0.2z(t− τ)

1 + z10(t− τ)
− 0.1z(t) (22)

where the initial condition and τ are set as z(0) = 1.2 and
τ = 17. The aim is to use past values of z to predict a future
value of z. The value of the signal is predicted 85 steps ahead,
based on the values of the signal at the current moment, and
6, 12, and 18 steps back:

y(k) = [z(k + 85)]

uuu(k) = [z(k − 18) z(k − 12) z(k − 6) z(k)]
(23)

The training set is comprised of data points in the interval
k ∈ [201, 3200] and the validation set from points in the
interval k ∈ [5001, 5500]. The obtained results are presented
in Table II. In this case, the fuzzyid and zofuzid produced valid
test results. Again, the methods from sk-learn were very fast
but did not perform as well as HiPCA or SUHICLUST on
the test results. Again, judging from the NRMSE, the best
performance was by SVR obtained via grid search but the
number of local models is almost one-third of the whole
learning data set size. The best NRMSE was, in this case,
obtained with the SUHICLUST method; however, that method
produced four local models more than HiPCA did, and the
learning time with SUHICLUST was considerably longer.
In this example, the tuning parameters of HiPCA are: the
termination criteria defined by the maximal NRMSE equal to
Γmax = 0.05, the maximal number of local models defined
as cmax = 20 and the fuzziness parameter η = 0.6.

3) Hyperbola example: In this example, the goal is to
model the Hyperbola function:

y =
1

0.1 + 1
p

∑p
i=1(1− ui)

(24)

The tests were made for 1-, 4-, 7-, and 10-D input space. The
inputs were randomly generated from an interval [0, 1]. For
learning, 900 samples were used and for testing 2000 samples
were used. The number of generated local models is presented
in Table III. For the one-dimensional problem, all methods
perform reasonably well. Increasing the dimension, the results
of the methods sk-learn library decrease. The NRMSE on the
learning set increases substantially together with the NRMSE
on testing data. The fuzzyid and zofuzid had a substantial
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1-D 4-D 7-D 10-D
Method #LMs / #EM
HiPCA 4/1 3/1 3/1 3/1
LOLI 5/1 22/1 32/1 29/1

LOLI C# 4/1 10/1 14/1 18/1
HILO 4/1 4/1 4/1 4/1
SUHI 5/1 5/1 5/1 3/1
fuzzyid 5/1 16/1 128/1 /
zofuzid 5/1 16/1 128/1 1024/1

HP 16/1 4/1 2/1 3/1
KNNT 63/1 63/1 63/1 63/1
ADAB 112.8/10 112/10 107.5/10 104/10
ETR 765.5/8 895.2/8 897/8 897.2/8
RF 90.3/10 89.9/10 90/10 91/10

SVR 112.8/10 112/10 107.5/10 104/10

TABLE III
RESULTS FOR HYPERBOLA PROBLEM (NUMBER OF LOCAL MODELS)

problem with the dimensionality. The fuzzyid method failed
to generate a model for a 10-D problem, while the error of
the model generated with zofuzid had a learning error around
0 and a testing error of 1.6. Also, the control of number of
local model was impossible for these two methods. Since they
use grid partitioning, the number of local models increase
exponentially with the dimension of the data space.

An interesting observation can be made by examining the
number of generated local models. It can be seen that the num-
ber of local models increases with the space dimension with
the LOLIMOT method while with the HiPCA, SUHICLUST,
and HP methods the number of local models decreases or at
least stays the same. The reason for decreasing the number
of local models is in the variance of the output that decreases
with the dimension. The output variance for the 1-D problem
is 3.4, for 4-D 0.28, for 7-D 0.11 and for a 10-D problem
0.08. The decrease of variance means that the span of output
is lower and, therefore, the nonlinearity also decreases. This
means that fewer local models are needed to approximate the
model. In all hyperbola examples, the tuning parameters of
HiPCA are: the termination criteria defined by the maximal
NRMSE equal to Γmax = 0.05, the maximal number of local
models defined as cmax = 20 and the fuzziness parameter
η = 1.0.

B. Dynamic examples

Three examples were chosen for dynamic modeling prob-
lem: Silver Box example (SB) [39], the Cascade Tanks Ex-
ample (TCT) [39], and the Coupled Electrical drive example
(CED) [39]. As seen from previous static examples, the fuzzyid
and zofuzid have problems with high dimensional examples;
therefore, they were omitted in the dynamical model testing
since the regressors have higher dimensions.

1) Coupled electric drives: The coupled electric drives
system consists of two electric motors that are used to drive
a pulley by using a flexible belt. The pulley is held by a
spring, resulting in a lightly damped dynamic mode. The
electric drives can be individually controlled, allowing the
tension and the speed of the belt to be simultaneously con-
trolled. The problem in this case is to identify the relation
between the process input, which is the sum of the voltages
applied to the motors, and the output, which is the pulley
velocity [39]. According to [40], the regressor in the form of

Method #LMs Γl Γt #EM t[s]
HiPCA 4 0.1194 0.1578 1 < 1
LOLI 12 0.1157 0.3595 1 ≈ 3

LOLI C# 7 0.1194 0.3375 1 ≈ 1
HILO 7 0.5750 0.4250 1 ≈ 11
SUHI 6 0.1079 0.1666 1 < 1
KNNT 15 0.182 0.464 1 < 1
ADAB 189.9 0.222 0.482 10 < 1
ETR 357 0.004 0.326 10 < 1
RF 8.4 0.633 0.622 5 ≈ 1

SVR 355 0.123 0.18 1 ≈ 31

TABLE IV
RESULTS FOR CED

uuu(k) = [1, y(k−1), y(k−4), y(k−6), y(k−7), y(k−8), y(k−
9), u(k − 1), u(k − 4), u(k − 6)] was chosen. The space for
partitioning was comprised of inputs and outputs delayed for
1, 3, 6, and 9 samples. The training data set has 374 samples
while the testing data set has 126 samples. The results of
identification are presented in Table IV. In this example, the
target NRMSE error for the HILO, SUHI, LOLI, and HiPCA
method was set to 0.12. The HP method failed to produce any
model. The HiPCA method reached the threshold with only
four local models and has the lowest test NRMSE. While the
HILOMOT produced good models for static examples, it failed
to produce a good model for the presented dynamic example.
The learning stopped because the algorithm could no longer
decrease the loss function. The tuning parameters of HiPCA
are: the termination criteria defined by the maximal NRMSE
equal to Γmax = 0.12, the maximal number of local models
defined as cmax = 20, and the fuzziness parameter η = 4.

2) Two cascaded tanks: This process is a liquid level
control system consisting of two cascaded tanks with free
outlets fed by a pump. The liquid (the demineralized water)
is transported by the pump to the upper of the two tanks.
The input signal to the process is the voltage applied to the
pump u(t), and the two output signals consist of measure-
ments of the water levels of the tanks h1 and h2. Since
the outlets are open, and since the tanks are relatively high,
the result is a significantly non-linear dynamic that varies
with the level of water [39]. The goal here is to identify
the level h2. According to [40], the regressor in the form of
uuu(k) = [1, h2(k−4), h2(k−1), h1(k−4), u(k−2), u(k−4)]
was chosen. The space for partitioning was defined as zzz(k) =
[h2(k), h2(k − 1), h1(k − 1), h1(k − 4), u(k − 1), u(k − 4)].
The training data set has 1500 samples while the testing data
set has 1000 samples. The results of modeling are presented
in Table V. The error threshold for the HILO, SUHI, LOLI,
and HiPCA methods was set to 0.05. Again, the HP method
failed to produce a model due to singularity issues. In this
example, the HILOMOT produced a valid model with the
same number of local models as HiPCA and SUHICLUST
did, with the HiPCA having a slightly better test NRMSE
value. In this example, the tuning parameters of HiPCA are:
the termination criteria defined by the maximal NRMSE equal
to Γmax = 0.05, the maximal number of local models defined
as cmax = 20 and the fuzziness parameter η = 1.5.

3) Silver box: This example concerns an electronic non-
linear feedback laboratory system (denoted as ”the silver
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Method #LMs Γl Γt #EM t[s]
HiPCA 4 0.04711 0.0465 1 < 1
LOLI 7 0.0438 0.0406 1 ≈ 3

LOLI C# 5 0.0463 0.0517 1 < 1
HILO 4 0.0498 0.0518 1 ≈ 8
SUHI 4 0.0485 0.0533 1 ≈ 8
KNNT 63 0.035 0.11 1 < 1
ADAB 794.7 0.06 0.197 10 < 1
ETR 1433.9 0 0.194 10 < 1
RF 27.8 1.054 1.162 5 ≈ 1

SVR 1248 0.039 0.052 1 2459

TABLE V
RESULTS FOR TCT

Method #LMs Γl Γt #EM t[s]
HiPCA 5 0.0415 0.0336 1 ≈ 2
LOLI 22 0.048 0.1337 1 ≈ 81

LOLI C# 4 0.0289 0.03 1 ≈ 1
HILO 22 1.620 1.6583 1 ≈ 401
SUHI 5 0.0445 0.0421 1 ≈ 7

HP 8 0.1487 0.1466 1 ≈ 170
KNNT 511 0.292 0.258 1 < 1
ADAB 4413.4 0.063 0.256 10 ≈ 1
ETR 9499.5 0.114 0.226 10 < 1
RF 32 0.653 0.662 10 < 1

SVR 5444 0.037 0.03 1 ≈ 386

TABLE VI
RESULTS FOR SB

box”). Analogue electrical circuitry is used to generate data
representing a nonlinear mechanical resonating system with a
moving mass, a viscous damping, and a nonlinear spring. The
purpose of the electrical circuit is to relate the displacement
y(k) to the force u(k). The nonlinear spring is described by
using a static position-dependent stiffness [39]. According to
[40], the regressor in the form of uuu(k) = [1, y(k − 1), y(k −
2), y(k − 4), u(k − 1), u(k − 2), u(k − 3)] was chosen. The
space for partitioning was the same as the regressor, but
first element (1) was replaced with process output y(k). The
training data set has 10000 samples while the testing data
set has 4000 samples. The results of modeling are presented
in Table VI. In this example, the best results were obtained
with the LOLIMOTC# method. While the HILOMOT method
failed to produce a good model, the SUHICLUST and HiPCA
needed one local model more than LOLIMOTC# did to get
the error below the threshold of 0.05. The reason that the
results for this example are better with the LOLIMOT method
than with HiPCA and SUHICLUST may be in the fact that
both HiPCA and SUHICLUST split the space based on the
data covariance matrix. If the partition space is incorrectly
chosen (e.g., linearly dependent inputs), both methods might
have problems obtaining a good model. In this example,
the tuning parameters of HiPCA are: the termination criteria
defined by the maximal NRMSE equal to Γmax = 0.05, the
maximal number of local models defined as cmax = 20 and
the fuzziness parameter η = 1.5.

IV. CONCLUSION

In this paper, hierarchical fuzzy space partitioning based on
hyperplanes for Takagi-Sugeno fuzzy model identification is
proposed. The method was tested and compared to the existing

and established fuzzy model and regression tree learning
methods. The comparisons were performed on three static and
three dynamic examples. The results show that the method
is relatively fast and can achieve the same or even better
results than established methods can (e.g., LOLIMOT, SUHI-
CLUST). Except in one example (Silver Box), the presented
method outperformed the existing fuzzy learning methods in
at least one measured category. It usually generates fewer
local models to achieve the desired accuracy. Compared to
the methods implemented in the sk-learn library, the tuning of
the presented method is easier and more straightforward. Very
significantly, the proposed method, in contrast to many other
methods, delivers reproducible results and does not depend
on stochastic initialization. The performance of the method is
studied and validated using a number of analytical examples,
benchmark problems from the literature, and real-process data.
The obtained results are highly promising.

The presented method splits the data based on the covari-
ance matrix of the data. Therefore, a bad selection of the
partitioning space and the distribution of the data will affect
the results, as is usual with all data mining methods. The
future development will go into these two directions. The
preliminary study that was made showed that moving the
splitting hyperplane in the direction of its normal can further
improve the results, especially when dealing with unbalanced
data. Preliminary results also show that removing the variables
that have a low correlation with the target output in a certain
fuzzy region and removing inputs that are highly correlated to
one and other in a certain fuzzy region improves the results
significantly.

ACKNOWLEDGEMENT

This work has been supported by Slovenian Research
Agency with the Research Program P2-0219.

REFERENCES

[1] T. A. Johanson and R. Murray-Smith, Operating regime approach to
nonlinear modeling and control, T. A. Johanson and R. Murray-Smith,
Eds. U.K.: Taylor Francis, 1981.

[2] T. Takagi and M. Sugeno, “A fuzzy identification of systems and its
applications to modelling and control,” IEEE Trans. on Syst., Man and
Cyber., vol. 15, no. 1, pp. 116–132, 1985.
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Dr. Škrjanc received the Highest Research Award from the Faculty of
Electrical Engineering, University of Ljubljana, in 2007, and the Highest
Award of the Republic of Slovenia for Scientific and Research Achievements
in 2008. He also received the Zois Award for outstanding research results
in the field of intelligent control. He also received the Humboldt Research
Fellowship for Experienced Researchers for the period between 2009 and
2011.


